来源:《仪器仪表学报》2021年第09期作者:王宸;唐禹;张秀峰;刘超;李丁龙;
选择字号

基于改进EfficientNet的锻件磁粉探伤智能检测方法研究

针对锻件生产企业零件缺陷检测效率低下,检测精度不高的问题,提出一种基于改进EfficientNet模型(EfficientNet-F),对两种锻件的荧光磁粉探伤图像进行检测。构建以EfficientNet为主干特征提取网络的深度学习模型,并引入特征金字塔为特征融合层,进而提高模型的多尺度特征融合能力;引入完备交并比和注意力机制以提高模型鲁棒性和检测效率。同时,搭建荧光磁粉探伤图像采集平台,构建缺陷样本数据集。试验表明,EfficientNet-F的最优模型在测试集上的均值平均精度达到了95.03%。F1得分值为0.96,浮点运算数为1.86 B。相较于其他深度学习模型,该方法提高了检测的精度和效率,可以满足相关生产企业的需求。 (本文共计1页)......[继续阅读本文]

本期目录