来源:《仪器仪表学报》2021年第01期作者:赵朋;董正阳;冯伟;周宏伟;傅建中;
选择字号

智能注射成形中工艺参数的多目标自学习优化

注射成形工艺参数是保障产品质量的关键因素。传统试错法严重依赖工艺人员的试模经验,随着注射成形工艺广泛应用于电子、航空航天等国家战略领域,产品的高端化对工艺参数智能化设置水平提出更高的要求。由于成形产品存在多方面的质量要求,且不同质量指标间可能相互制约,因此亟需一种工艺参数多目标智能优化方法,以获得不同优化目标间的帕累托最优。已有学者利用智能优化方法,如非支配排序遗传算法等,对多目标优化问题进行求解,但是此类方法需大量样本数据对质量-参数关系进行建模,存在试验次数多、且对不同材料及模具的适应性较差等问题。为解决上述问题,提出一种注射成形工艺参数多目标自学习优化方法,在优化过程中实时计算并更新各个工艺参数的梯度,并由不同质量指标的多梯度下降算法对多个目标函数进行优化,在优化过程中实现各工艺参数对产品质量影响程度的自主学习,省去了采集大量数据来建立多个质量模型的过程,实现了注射成形工艺参数的高效智能优化。在基准 (本文共计1页)......[继续阅读本文]

本期目录