来源:《仪器仪表学报》2018年第04期作者:刘涵;郭润元;
选择字号

基于X射线图像和卷积神经网络的石油钢管焊缝缺陷检测与识别

研究了基于X射线图像和卷积神经网络(CNN)的石油钢管焊缝缺陷检测与识别问题。首先采用数字图像处理技术拟合提取出焊缝区域,验证了咬边缺陷的存在不影响焊缝边缘的提取;针对常用阈值分割方法不适于小面积区域缺陷分割的局限,采用基于排序点的聚类算法(OPTICS)对区域内任意形状大小的缺陷和噪声干扰点进行分割,然后对缺陷、噪声和无缺陷的正常图像进行提取并进行数据增强及尺寸归一化操作,从而完成焊缝图像的预处理以构建出样本图库。最后采用CNN与Softmax分类器相结合的算法,以缺陷和噪声为输入样本训练CNN并进行了实际应用实验,实验结果验证了方法的有效性。 (本文共计1页)......[继续阅读本文]

本期目录