来源:《化学学报》2008年第19期 作者:冯长君;沐来龙;杨伟华;蔡可迎;
选择字号

用拓扑指数和神经网络研究有机污染物的生物富集因子

分享到: 分享到QQ空间

在修正Randic的分子连接性指数和连接矩阵的基础上,定义新型分子连接性指数(mF),并计算了239种有机污染物的分子连接性指数(mF).用其1F构建了239种有机污染物生物富集因子(lgBCF)的QSAR模型,该模型判定系数(R2)及逐一剔除法(LOO)的交互验证系数(Q2)分别为0.747和0.742.而用1F和4个电性距离矢量(Mk)构建的五元QSAR模型的R2及Q2分别为0.829和0.819.结果表明,从统计学的角度,该模型具有高度的稳定性及良好预测能力.从此模型可知,有机污染物BCF的主要影响因素是—C—,>C—,—O—,—S—,—X等分子结构碎片以及分子的柔韧性、折叠程度等空间因素.将5个结构参数作为人工神经网络的输入层结点,采用5∶26∶1的网络结构,利用BP算法,获得了一个令人满意的QSAR模型,其R2和标准偏差s分别为0.987和0.157,表明lgBCF与这5个参数具有良好的非线性关系.从上可见,新建的连接性指数1F以及电性距离矢量与有机物的生物富集因子具有良好的相关性,可望在物质构效关系研究中获得广泛的应用.(本文共计6页)       [继续阅读本文]

下载阅读本文     订阅本刊
   

相关文章推荐

化学学报杂志2008年第19期
化学学报
主办:中国科学院上海有机化学研究所;中国化学会
出版:化学学报杂志编辑部
出版周期:月刊
出版地:上海市

本期目录