基于Spark框架和ARIMA-BPNN的交通流量预测模型的研究
分享到:
研究海量数据基础上高速公路流量预测建模问题,提出了一种基于ARIMA-BPNN的混合预测模型,并建立基于Spark的分布式处理平台。建立ARIMA时间序列模型提取数据的线性变化规律,研究BPNN的残差预测;建立混合预测模型,研究并行化实现及其运行效率;建立Spark分布式计算平台下高速公路流量数据的预测模型并进行仿真实验。结果表明,Spark框架下的ARIMA-BPNN组合模型优于单一的ARIMA的预测,对预测拟合效果和精度方面表现良好,对海量数据处理有明显优势。(本文共计4页)
[继续阅读本文]