来源:《仪器仪表学报》2019年第06期作者:孔子迁;邓蕾;汤宝平;韩延;
选择字号

基于时频融合和注意力机制的深度学习行星齿轮箱故障诊断方法

针对行星齿轮箱振动信号频率成分复杂和时变性强的问题,提出了基于时频融合和注意力机制的深度学习行星齿轮箱故障诊断方法。首先,采用小波包分解将原始振动信号分解到频带和时间两个维度作为输入数据;然后,使用卷积神经网络融合数据的频带特征,使用双向门控循环单元融合时序特征;接着采用注意力结构对不同时间点的特征自适应地进行动态加权融合;最后通过分类器进行识别,实现行星齿轮箱的端对端故障诊断。实验表明,该方法对比现有的深度学习故障诊断模型具有更高准确率,能够对行星齿轮箱多种健康状态进行准确地诊断。 (本文共计1页)......[继续阅读本文]

本期目录