来源:《高中数理化》2014年第20期 作者:黄靓;
选择字号

一个三角形问题的多种解法

分享到: 分享到QQ空间    收藏 推荐

<正>对于给定条件的解三角形的有关问题,一般可运用正弦定理、余弦定理,把它统一为边或角的关系,即:(1)"化角为边",通过代数恒等变形进行转化,得出边的相应关系式,从而得出结论;(2)"化边为角",通过三角函数式的恒等变形及利用A+B+C=π等条件,得到内角的关系,从而得出结论.下面是在教学中对一个三角形问题的一题多解,供大家研讨.例已知△ABC的3个内角A、B、C的对边分别是a、b、c,且a2=b(b+c),求证:A=2B.方法1题目条件是边的关系,结果要求角的关系,所以可以用余弦定理直接将边的关(本文共计1页)       [继续阅读本文]

下载阅读本文     订阅本刊   
如何获取本文>>          如何获取本刊>> 

相关文章推荐

高中数理化杂志2014年第20期
高中数理化
主办:北京师范大学
出版:高中数理化杂志编辑部
出版周期:半月
出版地:北京市

本期目录